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ABSTRACT
The standard visibility model in light-pollution studies is the formula of Hecht, as used e.g.
by Schaefer. However, it is applicable only to point sources and is shown to be of limited
accuracy. A new visibility model is presented for uniform achromatic targets of any size
against background luminances ranging from zero to full daylight, produced by a systematic
procedure applicable to any appropriate data set (e.g. Blackwell’s), and based on a simple
but previously unrecognized empirical relation between contrast threshold and adaptation
luminance. The scotopic luminance correction for variable spectral radiance (colour index) is
calculated. For point sources, the model is more accurate than Hecht’s formula and is verified
using telescopic data collected at Mount Wilson in 1947, enabling the sky brightness at that
time to be determined. The result is darker than the calculation by Garstang, implying that
light pollution grew more rapidly in subsequent decades than has been supposed. The model
is applied to the nebular observations of William Herschel, enabling his visual performance to
be quantified. Proposals are made regarding sky quality indicators for public use.

Key words: history and philosophy of astronomy – sociology of astronomy – light pollution –
telescopes.

1 IN T RO D U C T I O N

1.1 Contrast threshold

Determining the faintest star or extended object visible to the naked
eye or with a telescope is a problem of interest in light-pollution
studies, the history of astronomy and vision science. It is an issue
of public concern and economic importance given the growth of
recreational ‘dark-sky parks’ for amateur astronomy and the impo-
sition of lighting ordinances to preserve the aesthetic quality of the
night sky (IDA 2013). This paper will present a model applicable
to uniform achromatic targets of any size, seen against background
luminance levels ranging from total darkness to daylight, hence rel-
evant to visibility problems in many areas. For low light levels, it
will be applied to historical astronomical data and shown to be more
accurate than previous models.

Visibility is dependent on the luminance (equivalent to surface
brightness) of the target object, Bt, in comparison with that of the
surrounding field, B. For an opaque object in front of a background,
the contrast is defined as

C = Bt − B

B
≡ �B

B
. (1)

For a target viewed through a transparent screen (or an astronomical
object viewed through the atmosphere), the portion covering the tar-
get contributes luminance B, hence �B = Bt. When the increment
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�B is at the threshold of visibility according to specified criteria,
then C is the threshold contrast. For a target of angular area A,
one can also consider the illuminance (equivalent to apparent mag-
nitude). If �B is in candela per square metre (cd m−2) and A is in
steradians then the apparent increment illuminance at the eye in lux
(lx) is

�I = A�B. (2)

The modelling problem is to find analytic expressions for threshold
�B or �I as functions of A and B. This will then indicate the limit-
ing surface brightness or magnitude for objects seen with the naked
eye against a sky with luminance B. Telescopic results can be found
by applying standard optical formulae which take into account the
changes in A and B imposed by magnification, and factors such
as light loss. Schaefer (1990) investigated stellar limiting magni-
tude by adopting a pre-existing model formula for �I in terms of B
(his equation 2) and applying modifications to those quantities. That
work has been particularly important, so similarities and differences
with the present treatment will be highlighted throughout this In-
troduction, which also outlines relevant aspects of psychophysics,
vision science and photometry. The model will be constructed in
Section 2 and shown to give an accurate representation of the labo-
ratory data. In Section 3, it is applied to astronomical visibility and
tested against historical limiting magnitude data collected at Mount
Wilson, as well as the nebular discoveries of William Herschel. It
is shown how the model can be used to make comparative predic-
tions about the effect of sky brightness on telescope performance.
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The concluding section discusses the practical definition of ‘dark
sky’ for the purposes of visual astronomy.

1.2 Blackwell’s data

The largest and most authoritative study of contrast threshold was
that of Blackwell (1946), whose data continue to be used in areas
such as lighting engineering and road safety (Narisada & Schreuder
2004). They were used in a popular book for amateur astronomers
by Clark (1990) to make graphical predictions of astronomical vis-
ibility. The approach to be taken here is instead analytic, giving
rise to formulae relevant to a wide range of visibility problems,
and applicable to data other than Blackwell’s. Blackwell measured
luminance in footlamberts, but the data will be presented here in
modern units (1 fL = 3.426 cd m−2). Blackwell investigated both
positive and negative contrasts, but only the positive data (target
brighter than surround) will be considered in this paper.

In order that the data can be correctly interpreted, it is necessary
to consider the experimental method in some detail. A total of 19
highly trained female observers aged 19–26 with approximately
20/20 vision were employed specially for the project (serving also
as data analysts). No gender effect has been reported in the liter-
ature, but the age, experience and motivation of the observers is
significant. Observers viewed targets using unconstrained (direct
or averted) binocular vision for effectively infinite time (i.e. such
that doubling of exposure did not alter successful detection rates).
Targets viewed at effectively infinite range (over 15 m) were uni-
form achromatic (broad-band white) discs of seven angular sizes
ranging from 0.595 arcmin to 6◦. These were either projected or,
for the smallest target, transilluminated. They were viewed against
backgrounds ranging from 3426 cd m−2 down to zero, and at five
levels of contrast (in relative proportion 0.24, 0.37, 0.55, 0.75, 1).
Observers were always allowed to become fully adapted to the
background luminance, and rest periods were given so as to avoid
fatigue. A single session would consist of 320 presentations, and
observers were not considered trained until they had participated in
approximately 20 sessions, though the published data were based
on a far higher level of experience (35–75 000 observations by each
observer) resulting in ‘unusual sensitivity and gratifying stability of
response’.

For every target and contrast level, each observer’s probability of
detection was found. For each observer’s probability curve (approx-
imately a normal ogive), a graphical procedure was used to extract
the contrast value M that would correspond to 50 per cent detection,
chosen since it could be calculated with highest precision, and σ , the
standard deviation of the normal probability integral. Results from
1500 probability curves were averaged, giving contrast threshold as
a discrete function of target size and background luminance: table
7 of Blackwell (1946) summarizes 90 000 observations by seven
observers. Smooth curves were drawn as a best fit to these data
points, and interpolations made, to produce the final values (table 8
of Blackwell 1946).

At ordinary light levels (for discs larger than 0.595 arcmin), a
‘forced-choice’ procedure was used, in which the target would ap-
pear in one of eight possible positions (or not at all), and observers
had to indicate where they thought the target was displayed using a
selector switch at the end of the viewing period. At low light levels,
requiring much longer viewing times, a two-valued forced-choice
procedure was used (‘yes–no’), in which the target was presented
(or not) at the centre of the screen, and observers had to indicate
whether they had seen it, again with a switch. Null targets enabled
the effect of random guessing to be eliminated.

The 50 per cent detection level was merely a statistical normal-
ization: the threshold at any other detection probability p could
be found by applying a multiplier f = 1 + (σ/M)z, where z is
the normal distribution standard score for cumulative probability
p (Blackwell 1952a). It is interpreted as meaning that an observer,
exposed many times to a threshold target under the conditions of the
experiment, would be expected to respond correctly on 50 per cent
of occasions. It does not mean that during a single observation the
target should be visible for 50 per cent of the time, as suggested by
Clark (1994): an observer able to see the target for any period of time
during every exposure would be expected to achieve a success rate
of 100 per cent (assuming no mistaken responses or false positives).
Nor does it mean that the observer would be 50 per cent confident of
having seen the target, as supposed by Schaefer (1990). Blackwell
reported that, in general, observers were confident of having seen
the target only in cases where the resulting detection probability
was 90 per cent or greater, corresponding to f = 1.62, suggesting
that thresholds should be multiplied by at least this much to give
realistic values. Blackwell & Blackwell (1971) noted that subjects
in forced-choice experiments could show a detection rate slightly
better than chance, even when not consciously aware of having seen
the target. Higher (poorer) thresholds are found if observers instead
adjust the brightness until the target becomes just visible. In order
to raise forced-choice thresholds to what they termed ‘common-
sense seeing’, Blackwell & Blackwell proposed a multiplier 2.4.
The application of an overall multiplier to laboratory data will here
be termed ‘laboratory scaling’, and can be used as a way of com-
paring data from studies performed under different experimental
conditions.

Blackwell’s data were extended to larger target sizes by Tay-
lor (1960a,b), and to all observer ages by Blackwell & Blackwell
(1971). Threshold was found to rise with increasing age: slowly up
to about 45, then quite rapidly. This is due mainly to loss of trans-
parency in the ocular media (Adrian 1989) rather than diminution
of pupil size, as assumed by Schaefer (1990). However, it was found
that to a very good approximation, the shape of the threshold curve
(on log axes) remained invariant, i.e. the effect of age is to intro-
duce a further overall multiplier, in addition to laboratory scaling.
Empirically determined age multipliers in Blackwell & Blackwell
(1971) range from 1 for 50 per cent of 20-yr-olds, to 6.92 to include
95 per cent of 65-yr-olds.

The age multiplier is an example of a ‘field factor’ (Taylor 1964)
constituting a departure from the laboratory conditions. More gen-
erally, these may be associated with the target (e.g. non-circular
shape, non-uniformity), viewing conditions (non-uniform back-
ground, glare sources) and observer (motivation, fatigue). The field
factors contribute further multipliers to the contrast threshold. There
may also be physical effects which objectively alter the stimulus,
such as magnification or light loss in a telescope, needing to be taken
into account as A → A′, B → B′. Hence in practice the threshold
function is FC(A′, B′), where F – the product of all field factors and
any laboratory scaling – has the effect of shifting the whole curve up
or down on log axes. Thus, the threshold function should in general
be considered relative rather than absolute (Blackwell 1952b), but
invariant in shape, implying a correlation between threshold at large
and small target sizes (i.e. in astronomy, an equivalence between
limiting stellar magnitude and limiting surface brightness).

This suggests two approaches to visibility modelling. One (here
called ‘enumeration’) is to attempt to quantify all the relevant field
factors from physical data (or estimate them) and hence determine F
for a given observing situation. The other (‘elimination’) is to leave
F as an unknown variable, unless data are available that allow it to
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be determined, or calculations can be performed where it cancels
out. Schaefer (1990) studied stellar visibility using enumeration,
whereas this paper will treat targets of arbitrary size using elimi-
nation. Schaefer assumed that the personal factor of the observer
(which he denoted Fs) was approximately 1, but that the detection
probability could vary, whereas actually the latter is a fixed nor-
malization constant and the personal factor may vary considerably
between individuals. The error was mathematically insignificant
since the threshold is multiplied by the product of these factors.

1.3 Photometric considerations

Luminance can be defined as

Bv = Kv

∫ ∞

0
E(λ)v(λ)dλ, (3)

where E is the spectral radiance (e.g. the Planck equation if the
source is blackbody) and v is a sensitivity function (of finite sup-
port) with associated normalization constant Kv . Examples of v are
the International Commission on Illumination (CIE) 1924 photopic
luminous efficiency function for a 2◦ field (here denoted Vph, with
Kph = 683 lm W−1) and the CIE 1951 scotopic function, Vsc (with
Ksc = 1700 lm W−1), both tabulated in Stockman (2014). One could
also choose the normalized passbands of the Johnson–Morgan sys-
tem (SU, SB, SV), tabulated in Bessell (1990). Apparent v-magnitude
can be defined differentially for targets of equal area as

m1
v − m2

v = 2.5 log
(
B2

v /B
1
v

)
. (4)

Luminance in cd m−2 is conventionally defined using Vph in equa-
tion (3), whereas magnitude in magV is defined using SV in equa-
tion (4). Also of importance in light-pollution studies is the sensitiv-
ity function of the Unihedron Sky Quality Meter, SSQ. The similarity
of these three sensitivity functions makes them effectively equiva-
lent for most practical purposes (Schaefer 1996; Cinzano 2005).

If the v-magnitude scale has zero-point Zv lx, then J lx
is equivalent to apparent magnitude mv = 2.5 log(Zv/J),
and B cd m−2 is equivalent to surface brightness μv =
2.5 log(604(180/π)2Zv/B) magv arcsec−2. Taking ZV = 2.54 ×
10−6 lx (Cox 1999) gives conversion formulae
mV = −2.5 logJ − 13.99, μV = −2.5 logB + 12.58. Hence-
forth, magnitude can be assumed to be V-band unless indicated
otherwise.

The darkest skies on Earth have a zenith luminance of approx-
imately 22 mag arcsec−2 (1.71 × 10−4 cd m−2), with the visible
sky background on a clear moon-less night being a combination
(in descending order) of natural airglow, zodiacal light and unre-
solved starlight (Leinert et al. 1998). Airglow typically accounts
for about 60 per cent of zenith sky luminance (Leinert et al. 1995),
varying with solar activity, and dominated by the 557.7 nm O I emis-
sion line which alone typically contributes around 20 per cent of
total V-band sky brightness (Patat 2008). At urban sites, the sky
spectrum is dominated by tropospheric scattering of anthropogenic
light; measurements by Puschnig, Posch & Uttenthaler (2014) near
Vienna showed very large peaks at 546 and 611 nm (attributable
to fluorescent street lamps) with smaller intervening peaks due to
high-pressure sodium lamps. Zenith sky brightness was in the range
15–19.25 magSQ arcsec−2 (approximately 1.1 × 10−1–2.2 × 10−3

cd m−2). As a general approximation, one can take 2 × 10−4 cd m−2

(21.83 mag arcsec−2) as representative of a truly dark sky, though
at a pristine site there may be regions of the sky that are darker than
this (Duriscoe 2013).

Human vision at normal light levels is photopic, utilizing the
trichromatic cone cells whose density is greatest in the foveal re-
gion of the retina. In very low light levels vision is scotopic, utiliz-
ing the monochromatic rod cells whose density is greatest outside
the fovea. There was formerly thought to be an abrupt switch be-
tween the two types of vision, though in fact, there is a continuous
transition at intermediate (mesopic) light levels as cone response
lessens and rods become active. Hence, it is misleading to speak
of ‘day’ and ‘night’ vision. The transition is dependent on the par-
ticular visual task and prevailing conditions, so cannot be speci-
fied exactly, but as a working definition one can take the range of
mesopic vision as 0.005–5 cd m−2 (CIE 2010), i.e. scotopic vision
operates in conditions darker than about 18.3 mag arcsec−2. For as-
tronomical purposes, Puschnig et al. (2014) estimated the limit as
18.9 magSQ arcsec−2 (approximately 0.003 cd m−2).

Vision has ‘channels’ for luminance and chromaticity; contrast
can be defined with respect to either, but in scotopic vision only
the luminance channel operates. If an observer is able to detect
colour then this indicates cone activity, so nocturnal astronomi-
cal observation often involves mesopic rather than scotopic vision.
Variable star observers generally restrict magnitude estimates to
stars at least 2 mag brighter than threshold, using direct rather than
averted vision, which gives more reliable estimates since it mini-
mizes rod contribution (Hallett 1998). Schaefer (1996) found from
a survey of experienced observers that in telescopic stellar view-
ing, scotopic vision operates at no more than about 1 mag above
threshold. Mesopic photometry would be important for a proper
treatment of suprathreshold magnitude estimates or visibility un-
der severe light pollution (including twilight). However, this paper
is concerned with threshold rather than brightness perception; and
although the model will cover achromatic vision across the entire
luminance range, the astronomical applications will be restricted to
scotopic vision, i.e. targets within about 1 mag of threshold against
a background no brighter than about 3 × 10−3 cd m−2 (18.9 mag
arcsec−2), to which the observer is assumed fully adapted.

Since photometric units are usually defined by photopic sensi-
tivity, one might query the validity of low-level contrast thresholds
measured in this way. However, suppose the background and target
have the same relative spectral radiance, i.e. E, αE, respectively (as
in Blackwell’s experiment), with the background having luminance
B given by equation (3). Then, the target has luminance Bt = αB,
and from equation (1) the contrast is C = α − 1, independent of
the sensitivity function used to define the photometry (Walkey et al.
2005). There is, however, a dependence on E(λ) which must be
taken into account. Define

ρE = Ksc

∫ ∞
0 E(λ)Vsc(λ)dλ

Kph

∫ ∞
0 E(λ)Vph(λ)dλ

. (5)

This is the ‘S/P ratio’ (CIE 2010) which characterizes the relative
output of a light source with spectral radiance E as measured with
respect to scotopic or photopic luminosity. A source with photopic
luminance B has scotopic luminance ρB. Thus, two sources could be
measured as having equal (photopic) luminance, but one with lower
S/P ratio will have less output (appear dimmer) at scotopic levels.
Spectral radiance can also be characterized by correlated colour
temperature (CCT), defined as the temperature of a blackbody radi-
ator whose perceived colour most closely resembles that of the light
source. There is no general relationship between S/P ratio and CCT
since light sources are not in general blackbody, though incandes-
cent lamps are a very close approximation, and stars somewhat less
so (due to absorption lines).
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Of practical importance is where target and background are
of differing relative spectral radiance, which is generally the
case for objects seen against the sky. Suppose the target and
background have spectral radiances Eτ (λ), E0(λ) (not necessarily
blackbody), S/P ratios ρτ , ρ0, and the target luminance is mea-
sured as Bτ = Kph

∫ ∞
0 Eτ (λ)Vph(λ)dλ, against background B0 =

Kph

∫ ∞
0 E0(λ)Vph(λ)dλ. Then, the scotopic luminance would be

the same as a Blackwell target of measured (photopic) luminance
Bt = (ρτ /ρBlackwell)Bτ against a background B = (ρ0/ρBlackwell)B0.
We also have Bt = αB, i.e. α = (ρτ Bτ )/(ρ0B0). Suppose that the
target is at threshold, so C = α − 1. Then, the contrast of the actual
target against its background is

Cτ = Bτ − B0

B0
= (ρBlackwell/ρτ )Bt

(ρBlackwell/ρ0)B0
− 1 = ρ0

ρτ

(C + 1) − 1. (6)

Hence in general there must be a correction to threshold values,
though no correction is needed as long as target and background
have the same relative spectral radiance.

Blackwell used incandescent light sources reported as having
colour temperature 2850 K (Tousey & Hulburt 1948), i.e. equiva-
lent to CIE 1931 standard illuminant A. One must also take account
of the spectral reflectance of the white screen, but this can reason-
ably be assumed constant for all visible wavelengths, in which case
the light can be supposed to have been blackbody radiation to a
very good approximation. Evaluating equation (5) using the Planck
equation and the tabulated luminous efficiency functions gives
ρ2850 = 1.408. Knoll, Tousey & Hulburt (1946) found thresholds
using incandescent lamps with colour temperature 2360 K (Tousey
& Hulburt 1948). If both teams measured a (photopic) luminance
at some equal value then the scotopic luminance of Blackwell’s
light would be greater by a factor ρ2850/ρ2360 = 1.220. To compare
luminance measurements between the two experiments, one would
need to make this correction at scotopic levels. A correction would
also be required at mesopic levels, but photometry for that case is
not uniquely defined (Rea et al. 2004; CIE 2010). By calculating
S/P ratios for blackbody temperatures 2000 ≤ T ≤ 50 000 K, one
finds the approximation

ρT = (5.738 × 106)/T 2 − (8.152 × 103)/T + 3.564, (7)

which is accurate to within about 1 per cent across the range.
Let mV, mB denote the V- and B-magnitudes of a source with

spectral radiance E. The (B − V) colour index, mB − mV, is a
further way of characterizing E in addition to ρE, though there is
no general relationship between the two quantities. Let mph, msc

denote magnitudes for the same source with respect to Vph or Vsc

(with arbitrary zero-points Zph, Zsc), and let subscript ‘e’ denote
either ‘ph’ or ‘sc’. From the definitions (equations 3–5)

msc − mph = −2.5 logρE + Csc−ph, (8)

mV − me = −2.5 log

(∫ ∞
0 E(λ)SV (λ)dλ∫ ∞
0 E(λ)Ve(λ)dλ

)
+ CV −e − LV −e,

(9)

where Cx − y = 2.5 log(Zx/Zy), Lx − y = 2.5 log(Kx/Ky). A natural
zero-point choice is

Csc−ph = Lsc−ph = 2.5 log(1700/683) = 0.990. (10)

One could calculate mV − me using test functions for E (e.g. black-
body), or else by using stellar spectra, in which case there could
also be a correction for atmospheric absorption and reddening. One

could express the result in terms of colour index, in the first case
using the same test functions to find an approximate relation, or in
the second using the colour indices for the selected stellar spectra.
Schaefer (1996) calculated mV − mph = 0.042(mB − mV) using the
first method, while Steffey (1978) used stellar spectra for classes
B0–M2 and presented graphical data showing a good straight-line
fit mV − msc = 0.04−0.29(mB − mV ). Together these suggest

msc − mph ≈ 0.25(mB − mV ) (11)

with due caution because of the differing methods used. There have
also been empirical studies of suprathreshold (i.e. mesopic) visual
magnitude estimates, mvis, seeking a linear relation mvis − mV = a +
b(mB − mV). By continuity and equation (11), one expects b � 0.25,
lowering as rod contribution lessens. The surveys by Landis (1977),
Bailey & Howarth (1979) and Collins (1999) support a ≈ 0, b ≈
0.22, while Stanton (1999) used 650 specially acquired observations
from 63 observers to obtain a = 0, b = 0.21.

Flower (1996) found effective temperature versus colour index
based on a large sample of stellar spectra. Relating his table 3 to
equation (7) (and writing mB − mV = c) yields

logρc = −0.059 05c6 + 0.1674c5 − 0.065 63c4

−0.1843c3 + 0.2031c2 − 0.1802c + 0.4447. (12)

A linear approximation is

logρc = −0.1094c + 0.4378, (13)

which is accurate to within 5 per cent for −0.17 ≤ c ≤ 1.65. With
equations (8) and (10) this gives

msc − mph = 0.27(mB − mV ) − 0.10, (14)

consistent with equation (11).
The colour correction for stars relative to laboratory sources can

now be calculated. Let T be the colour temperature of a (blackbody)
laboratory point source and T∗ be the effective temperature of a
star (assumed to be blackbody to good approximation), and let B,
B∗ be their respective (photopic) luminances. Suppose they have
the same scotopic luminance, i.e. ρT B = ρT∗B∗, and denote their
V-magnitudes mT, m∗. Let c be the colour index of the star, i.e.
ρT∗ ≡ ρc. Then (from equation 4)

m∗ − mT = −2.5 log

(
ρT

ρc

)
. (15)

Using equation (13) and the previously calculated values of ρT, the
corrections for the laboratory temperatures of Blackwell (1946) and
Knoll et al. (1946) can then be written as

m∗ − m2850 = 0.72 − 0.27(mB − mV ), (16)

m∗ − m2360 = 0.94 − 0.27(mB − mV ). (17)

Note that if m1, m2 are the thresholds for colour indices c1, c2, then

m1 − m2 = 0.27(c2 − c1). (18)

Schaefer (1990) calculated equation (17); his Fc = FoFv is equiv-
alent to ρ2360/ρc, though he worked in terms of photon count, in
which case photonic passbands should be used (Bessell & Murphy
2012). He gave limited details of the calculation but stated the ap-
proximate result 1 − (mB − mV)/2, which is contradicted by the
present analysis (a denominator 4 would be acceptable). He ap-
pears not to have used it except in the derivation of his equation
(18), where he assumed a uniform value ρ2360/ρc = 0.5 for stars.
Schaefer stated that the correction should be applied to background
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as well as target, but this is only valid if the background is (approx-
imately) blackbody at visible wavelengths, and the night sky is not,
due to airglow (and any anthropogenic light pollution). The colour
index of the night sky is similar to that of the Sun, but that does not
imply similarity of S/P ratio.

The spectral radiance of the sky is variable: at a given site there
will, for example, be temporal changes in airglow, variation of tro-
pospheric scattering with zenith distance, and variation of zodiacal
light with ecliptic latitude. Zodiacal light is scattered sunlight, and
its spectrum is almost identical to the Sun’s at visible wavelengths
(fig. 38 of Leinert et al. 1998); integrated starlight has approxi-
mately the same spectrum over that range (fig. 1 of Leinert et al.
1998). Hence, the moon-less zenith sky without light pollution can
reasonably be approximated by a 5500 K blackbody spectrum to-
gether with airglow lines in some relative percentage of luminance.
Taking the typical airglow spectral data given in table 13 of Leinert
et al. (1998), one finds ρsky ranging from 0.79 (100 per cent airglow)
to 2.26 (0 per cent), with a typical figure (60 per cent) being 1.38.
This is very close to the S/P ratio of Blackwell’s light sources (1.41,
equivalent to 58 per cent airglow). It is therefore reasonable to take
the spectral radiance of Blackwell’s background as a sufficiently
good approximation of a typical moon-less night sky in the absence
of light pollution.

1.4 The data of Knoll et al.

The point-source visibility study of Knoll et al. (1946) is of special
interest because of its role in subsequent astronomical applications.
Five young experienced observers used binocular vision to view a
projected target of approximate diameter 1 arcmin. Each observer
was given unlimited time to raise and lower the target brightness to
find the level at which it was just visible. Thresholds were presented
as equivalent increments (�I) for an opaque target. To compare
the results with the point-source thresholds of Blackwell (1946),
the latter’s scotopic luminance values (for background and incre-
ment) must be multiplied by 1.220 because of the differing colour
temperatures, and a further overall multiplier, l, must be applied
to the increments because the method of adjustment yields higher
thresholds than forced choice with 50 per cent detection probability.
Tousey & Hulburt (1948) proposed l = 2, because this was close
to the Blackwell normalization multiplier f for forced-choice de-
tection probability close to 100 per cent, though in the adjustment
procedure, the concept of detection probability is strictly meaning-
less. In fact, one finds that l = 1.814 brings the scotopic data (−4 ≤
logB ≤ −2) into almost exact agreement (Fig. 1). Adjustment would
also be required at mesopic levels, though some discrepancy would
likely remain (as also at photopic levels), attributable to the differing
experimental procedures, though not relevant to the astronomical
situations considered in this paper. For scotopic point-source thresh-
olds (i.e. stars at night) the two data sets are effectively equivalent,
though Blackwell’s data are to be preferred as the more authorita-
tive.

1.5 Visibility models

The earliest visibility models were for point sources. Langmuir &
Westendorp (1931) proposed �I ∝ √

B, but this was poor. Knoll
et al. (1946) offered

�I = c(1 + KB)1/2, (19)

where c = 1.076 × 10−9 and K = 105 for �I in lx and B in cd
m−2. Equation (19), like the Langmuir–Westendorp equation, took

Figure 1. Point-source threshold data from Knoll et al. (1946, dotted line)
and Blackwell (1946, dashed), the latter having been adjusted as explained
in Section 1.4.

no account of the distinction between photopic and scotopic vision.
In response, Hecht (1947) gave a formula derived from his own
photochemical theory of retinal function (Hecht 1934), with two
discontinuous branches:

�I = c(1 + (KB)1/2)2, (20)

where (c,K) = (1.706 × 10−9, 1.259 × 103) for B ≤ 1.645 ×
10−2 cd m−2, and (c,K) = (4.808 × 10−8, 1.259 × 10−1) for B ≥
1.645 × 10−2 cd m−2. This offered a better overall fit, especially in
the photopic range. Tousey & Hulburt (1948) studied the visibility
of stars in daylight and introduced a new empirical formula for �I
which need not be considered further here, while Weaver (1947)
studied night-time stellar visibility making use of Hecht’s formula.
That same formula was used by Garstang (1986) and then by Schae-
fer (1990), whose work has formed the basis for most subsequent
treatments, including the proposed extension of the model to finite
target sizes by Garstang (1999), and the light-pollution study of
Cinzano, Falchi & Elvidge (2001). Equation (20) is also the basis
for online limiting magnitude calculators widely used by amateur
astronomers (Unihedron 2014a).

While it has long been appreciated that Hecht’s photochemical
theory was invalid (Westheimer 1999), and that there is not really
a discontinuous break between photopic and scotopic vision, what
has not been noticed is that for the luminance range relevant to as-
tronomical observation, Hecht’s formula was actually inferior to the
one by Knoll et al. which it was supposed to replace. Fig. 2 shows
the mean data from Knoll et al. (1946) converted to modern units,
together with equations (19) and (20). An equivalent graph was
presented in the original units by Hecht (1947). While it is evident
that Hecht’s model is greatly superior for photopic vision, it can be
seen that this is not so in the scotopic (and lower mesopic) region.
For logB in the range −1.5 to −4 (16.33–22.58 mag arcsec−2), the
data form a compressive curve whereas Hecht’s curve is acceler-
ating. The straight line of Knoll et al. is better, but the new model
presented here will be seen to be of the correct shape, providing a
more accurate estimate of stellar visibility.
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Figure 2. Data from Knoll et al. (1946) together with their model (equation
19, dotted) and that of Hecht (1947, equation 20, dashed).

1.6 Astronomical visibility factors

1.6.1 Viewing time

Astronomical observations are often enhanced by long viewing
times; Clark (1994) cited O’Meara’s visual recovery of Halley’s
comet after 1–2h, claiming it demonstrated a long-term integration
property of the visual system. However, saccades limit fixation time
to no more than about a second, comparable with the maximum in-
tegration time of retinal cells. Bishop & Lane (2004) measured
the shortest viewing times such that telescopic targets appeared
undimmed compared with unlimited exposure, using the 0.61 m
telescope at Mauna Kea, and found times of 1.03 s or less. Confu-
sion over Blackwell’s definition of detection probability has led to
an incorrect assumption that it is related to exposure time (Schaefer
1990); however, laboratory experiments have shown that long
viewing times generally degrade rather than enhance performance
(Mackworth 1948). The benefit in astronomy can be explained by
atmospheric variability; planetary observers are familiar with mo-
ments of best seeing, but what is less generally appreciated are
fluctuations of transparency.

1.6.2 Atmospheric turbulence

Air turbulence creates variations of refractive index manifested in
seeing (image motion caused by tilting of wavefronts) and scintil-
lation (brightness variation caused by curved wavefronts focusing
or defocusing starlight; Dravins et al. 1997a). The two effects are
distinct, with major contributions from different atmospheric alti-
tudes, and have little or no correlation, though aperture dependence
leads to an apparent correlation for naked-eye viewing, i.e. more no-
ticeable scintillation on nights of poor seeing. A site with excellent
seeing can nevertheless have high scintillation.

As will be explained in Section 2, at scotopic levels point sources
are indistinguishable from extended targets up to about 10 arcmin
in diameter. Hence, seeing is important for high-magnification tele-
scopic viewing, but has no effect on naked-eye viewing. Scintilla-
tion, on the other hand, has greatest effect for naked-eye viewing,
and is of potential significance for threshold determinations with or
without optical aid.

Scintillation occurs on multiple temporal scales, at all zenith an-
gles, and can lead to sudden ‘flashes’ with a brightening of 1–2 mag
lasting a hundredth of a second, or lesser increase for longer (Elli-
son & Seddon 1952). The visibility of brief flashes is dependent on
their energy in relation to threshold (Blondel & Rey 1911); specific
cases would require detailed calculation, but it can be seen that the
general effect is that a very faint star may only be seen momentarily
during many minutes of observation, and there may on occasion be
a sighting of a star considerably fainter than the usual limit. Scin-
tillation alters the colour of stars (Dravins et al. 1997b) and has a
differential effect on point versus extended sources (Dravins et al.
1997a). The effect of scintillation is averaged out by long integra-
tion times and large apertures, but human vision has a very short
integration time and (for naked-eye viewing) a very small aperture,
so that variations are potentially large. The phenomenon is caused
by high-altitude winds, so proximity to a main jet stream is ex-
pected to lead to higher scintillation: Dravins et al. (1998) noted the
high rates measured at Mauna Kea and Paranal, and suggested that
there would in general be greater scintillation along latitudes ±30◦,
and minima at the equator and poles.

The effect of seeing on telescopic views is dependent on aperture.
The Fried parameter r0 is the critical diameter above which resolving
power is limited by the atmosphere rather than by the telescope’s
own diffraction (Fried 1966). In a sufficiently large telescope, a star
produces a blurred disc of speckles (each of which is an Airy disc)
with an approximately Gaussian profile. It is customary to quote the
seeing θ as the disc’s full width at half-maximum (FWHM), though
the actual image is larger. Since FWHM = 2σ

√
2ln2 for a Gaussian

standard deviation σ , and since ±3σ will contain 97 per cent of
the light of a Gaussian disc, one could take the actual width of the
seeing disc as approximately 3/

√
2ln2 = 2.55θ . To contain 100 per

cent, one could take ±3.3σ , i.e. 2.80θ . Schaefer (1990) assumed the
disc diameter to be equal to the quoted seeing (in his equation 7),
which may be true for small telescopes depending on how the seeing
has been assessed by the observer. Garstang (2000) made the same
assumption in his model, but applied it to large telescopes.

1.6.3 Position, colour, shape, structure

Zenith angle is a determinant of atmospheric extinction and sky
brightness (equations 3 and 19 of Schaefer 1990), as well as atmo-
spheric reddening and scintillation. In the method of enumeration
one requires absolute values for these, whereas for elimination it is
sufficient to require that observations are all made under sufficiently
equivalent conditions. Airmass affects point and extended sources
slightly differently (see e.g. Duriscoe 2013 and references therein)
and this would need to be taken into account if the most precise
results were required, but will not be done here.

It has been shown that Blackwell’s experiment at scotopic lev-
els can be considered a good representation of 2850 K blackbody
sources against a sky with typical airglow and negligible light pollu-
tion. Targets with a spectral radiance very different from blackbody
(e.g. emission nebulae), or heavily light-polluted sky backgrounds,
would require special treatment using the techniques of Section 1.3.
If the concern is with finding limiting magnitude by the method of
elimination, it is sufficient to assume that stars are all of approx-
imately the same colour index (as was done by Schaefer 1990;
Cinzano et al. 2001), though not necessarily a specific value. For
stars of specific colour index equation (16) should be used.

Threshold for rectangular targets was investigated by Lamar et al.
(1948) who showed that area is a sufficient determinant for aspect
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ratios up to approximately 7. Hence, the model should be adequate
for elliptical targets with apparent eccentricity up to about this fig-
ure. Non-uniform targets will be treated approximately: it will be
shown that realistic predictions can be made regarding the visibility
of galaxies or the seeing discs of stars. The sky itself can be con-
sidered uniform in the immediate vicinity of a target, but field stars
potentially introduce glare sources, such that a faint target may be
invisible because of a brighter star in the vicinity. This glare effect
can be treated in a standard way (Adrian 1989) but specific problems
of this type will not be considered here.

1.6.4 Telescope use

Light loss in a telescope introduces a differential effect with re-
spect to naked-eye viewing, and constitutes a stimulus modifica-
tion. Schaefer (1990) assumed transmittance values according to
telescope type, but it will be seen that if multiple observations
are recorded under suitably controlled conditions (as was done by
Bowen 1947), then the transmittance (denoted F−1

t ) can be deduced
by elimination. Monocular vision through a telescope introduces an-
other differential effect, though this is a modification of threshold
rather than stimulus. Lythgoe & Phillips (1938) measured contrast
thresholds with left (CL), right (CR) and both eyes (C), finding the
approximate relation 1.4C = 0.5(CL + CR). Theoretical consid-
erations suggested that the factor on the left should be

√
2, and

if threshold is equal in both eyes then this means the monocular
threshold is

√
2 times the binocular value. This is the factor that

was assumed by Schaefer (1990, his Fb), though it was included
incorrectly as a stimulus modification in his equation 15 (i.e. as a
multiplier of B), and this was repeated by Garstang (2000).

Magnification produces an increase of target area and also in
most cases reduction of retinal illumination, because the observer
effectively views through an artificial pupil (i.e. the exit pupil of
the instrument, which is usually smaller than the eye pupil). In
some cases, the Stiles–Crawford effect may need to be considered
(i.e. the reduction in luminous efficiency of rays entering the eye
obliquely). This is significant for photopic (and mesopic) vision,
being attributable to directional sensitivity of cone cells, but Flamant
& Stiles (1948) found little or no directional sensitivity in rod cells,
while Van Loo & Enoch (1975) found a very small effect, but
only for rays entering at the periphery of pupils larger than about
5 mm. Hence, they stated that the usual equation for the photopic
effect could not be applied, though Schaefer (1990) proposed such
an expression (his equation 9) which incorrectly gives a non-zero
value for all pupil sizes. In this paper, the effect will be considered
negligible.

Telescope use potentially introduces other differential factors rel-
ative to naked-eye viewing. Observers may be apt to use near rather
than infinite eye focus when looking through an eyepiece, which
may alter the effect of any ocular aberration. The telescope itself
may suffer from aberration, and will show the viewer a much smaller
apparent area of sky, set within a darker surround. There may be
a difference of search procedure between naked-eye and telescopic
viewing (e.g. finding known stars to assess naked-eye limit, then
searching for hitherto unknown ones to assess telescopic limit). If
the telescope is undriven then motion may be a factor. These will be
assumed part of an overall telescopic field factor whose components
can be split into magnification dependent (FM) or independent (FT)
terms. If an approximate value is needed, it will be assumed that
FT = √

2, i.e. the only significant magnification-independent fac-
tor is the correction for monocular vision. FM can be considered to
be unity at low magnification in the absence of the Stiles–Crawford

effect, but contributions could come from the use of interchangeable
eyepieces of differing specification and quality, and at high mag-
nification the point spread function of the eye will be significant
(Watson 2013), with an exit pupil of 0.5 mm usually being regarded
as the limit below which diffraction in the eye begins to dominate
(Jacobs, Bailey & Bulimore 1992). This imposes a maximum useful
magnification (Angers 1998), apart from the limitations imposed by
seeing. In practice, it should be sufficient to assume FM = 1 up to
some magnification beyond which there is no further improvement
in threshold.

1.6.5 Definition of threshold

The activities of amateur astronomers can lie anywhere between
science and recreational sport. If the latter, then the individual’s
concern with limiting magnitude may be to maximize it, whereas
for science a main interest should be consistency of measurement.
Scintillation in particular is a potential bonus from the recreational
point of view, though a source of noise for science.

Threshold can be boosted in various ways: Curtis (1901) observed
stars through a hole in a black screen (i.e. against a totally dark
background) and in this way was able to see one of magnitude 8.3,
and possibly one of magnitude 8.9, though his limit for stars seen
against the sky was 6.5. Flickering is known to improve threshold
(Kelly 1977): a rapidly operating shutter (e.g. a fan) adjusted to the
optimum frequency of around 6 Hz, and placed in the line of sight
(e.g. within a telescope), would produce some gain of magnitude.
O’Meara (1998) found that hyperventilation helped, consistent with
the findings of Connolly & Barbur (2009), though excessive oxygen
is damaging to the retina (Yamada et al. 1999).

It has always been appreciated that the traditional naked-eye mag-
nitude limit of 6 is merely approximate. Weaver (1947) commented
on the magnitude limits of nineteenth-century naked-eye star cata-
logues, which ranged from 5.7 (Argelander) to 6.7 (Heis). The latter
observer was renowned for his visual acuity, and his Atlas Coelestis
is unusual in including the galaxy M33 as a naked-eye object (Heis
1872). Gould’s Uranometria Argentina had a stated magnitude limit
of 7 but modern photometry has shown the actual limit to be 6.5
(Gould 2010). As an example of exceptional eyesight, Weaver cited
Meesters’ ability to see stars to 6.9 mag. Weaver’s study upheld a
value of just over 6 for the typical dark-sky naked-eye limit, yet
more recently there has been a substantial raising of achievement
and expectation. The Bortle Scale (Bortle 2001) suggests that for
a Class 1 (‘excellent’) site, the limiting magnitude should be ‘7.6–
8.0 (with effort)’ and for Class 2 (‘typical truly dark site’) 7.1–7.5.
Schaefer (1990) reported O’Meara’s extraordinary ability to see
stars as faint as 8.4 mag against the sky. Apart from unusual acu-
ity or special observing techniques, such high limits may in many
cases be explained by scintillation, with momentary glimpses being
taken as typical threshold. Subjective estimates may not always be
reliable or accurate; the survey by Schaefer (1990) yielded many
responses (about half of the total) in which naked-eye limit was
given only to the nearest whole number.

It is a matter of policy judgment whether visibility recommenda-
tions for the general public should be based on typical or extreme
performance. For modelling, one requires a definition that most
closely resembles the conditions of the laboratory data (Blackwell’s
experiment) and is not unduly sensitive to local effects or false posi-
tives. Probably, the best way to achieve this in practice is the method
of star counting, using designated areas close to zenith. Stars should
be continuously visible (with direct or averted vision) for some ex-
tended period (seconds) rather than be seen to flash momentarily.
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The observer should be fully dark adapted, with screening from ter-
restrial glare if necessary, and with a naked-eye view of the sky that
is at least as large as a typical apparent field of view in a telescope
(e.g. 50◦). For telescopic views, the use of magnitude sequences
(as described by Schaefer 1990) is convenient, but should be con-
sistent with naked-eye procedures. It will be implicitly assumed in
subsequent discussion that thresholds effectively conform to these
or similar criteria.

2 TH E V I S I B I L I T Y M O D E L

2.1 Modelling strategy

Fig. 3 shows log�B as a function of logB for various target sizes,
using Blackwell’s data. In daylight conditions, the slope is approxi-
mately 1, i.e. C = constant, which is Weber’s law. For extremely low
B, the slope of the graph is zero, where �B has a non-zero limiting
value attributable to neural noise (‘dark light’). The curves indicate
that a background B � 10−5 cd m−2 (25.08 mag arcsec−2) is ef-
fectively zero for human vision, a finding also made by Crawford
(1937).

Fig. 4 shows logC as a function of logA for different levels of
background luminance. For each B, the graph is asymptotic at both
ends. For large A, the slope tends to zero, i.e. the contrast threshold
approaches some limiting value C∞ which is higher, and reached
far more slowly, as B decreases. For small A, the graph becomes a
straight line of slope −1, i.e.

CA = R, (21)

where R is a constant. This is Ricco’s law (Ricco 1877), and the
maximum size for which it applies is sometimes called the Ricco
area. The physiological interpretation is that the visual receptive
field (corresponding to a number of receptor cells) sums the to-
tal energy received over its area, with a certain minimum energy
being required in order to initiate a reaction. Both the Ricco area
and the constant, R, become larger as the background luminance
B decreases. The significance in visual astronomy is that threshold
targets subtending less than the Ricco area are indistinguishable
from point sources; hence, faint stars can be mistaken for nebu-
lous objects and vice versa. This is reflected in the New General

Figure 3. Threshold increment versus background luminance for various
target diameters (in arcmin). Data from tables 4 and 8 of Blackwell (1946).

Figure 4. Contrast threshold for different values of background luminance
B, from table 8 of Blackwell (1946). Curves are at intervals of 1 log unit,
from 3.426 × 10−5 cd m−2 (top) to 3.426 × 103 cd m−2 (bottom).

Catalogue (Dreyer 1971), where a number of entries are misiden-
tified stars. Hubble (1932) noticed an analogous effect occurring
with threshold images on photographic plates, which he attributed
to a combination of the photographic process and visual inspection.

Blackwell defined the ‘critical visual angle’ graphically as the
point where the threshold curve (reading left to right in Fig. 4)
begins to deviate from a slope of −1, so that Ricco’s law no longer
holds. The more usual convention (Adrian 1989) is to define the
Ricco area AR as the intersection of the asymptotes of the threshold
curve, i.e.

AR = R/C∞. (22)

The modelling strategy is first to find R and C∞ as functions
of B, so that the asymptotes can be written as Clow = R(B)/A
and Chigh = C∞(B). The full C curve can then be obtained by
smoothly piecing together the two asymptotes. Koopman (1986)
suggested using an exponential joining function but did not ob-
tain analytic expressions for the asymptotes. Adrian (1989) found
asymptotic expressions by curve fitting and used the combined func-
tion C = (C2

low + C2
high)1/2, which was also adopted by the Interna-

tional Commission on Illumination (CIE 1981). A different model
was offered by Matchko & Gerhart (1998). All of these involved a
large number of tuneable parameters.

The approach to be taken here is new, and is based on the sur-
prising finding that R and C∞ are both simple functions of B−1/4,
across appropriate ranges of B. Model parameters are then speci-
fied by linear relations, in a systematic procedure that can be ap-
plied to any appropriate data set. The complete function will be
C = (Cq

low + C
q
high)1/q , where q is the only tuneable parameter in

the model.

2.2 Point-source model

The asymptotic behaviour of C for small area A is obtainable from
data for targets small enough to be effectively point sources, i.e.
such that Ricco’s law (equation 21) is valid. One can calculate
R = CA from these data, then investigate the dependence of R on
B. The form of equations (19) and (20) motivates the search for
an empirical formula involving simple rational powers. A striking

MNRAS 442, 2600–2619 (2014)
Downloaded from https://academic.oup.com/mnras/article-abstract/442/3/2600/1052389
by guest
on 05 January 2018



2608 A. Crumey

Figure 5.
√

R = √
CA versus B−1/4, using data from table 8 of Blackwell

(1946) for target diameter 0.595 arcmin.

relation emerges when one plots
√

R versus B−1/4, as shown in
Fig. 5. The graph consists of two linear sections roughly corre-
sponding to photopic and scotopic vision, i.e.

Rscot = (
r1B

−1/4 + r2

)2
, (23)

Rphot = (r3B
−1/4 + r4)2, (24)

for constants ri obtainable by linear regression. The discontinuity
between the two branches is a mathematical artefact rather than
physiological fact: one assumes there must be a short but continuous
bend joining the two straight sections. Hence, the graph is really
an almost-degenerate hyperbola (

√
R − √

Rscot)(
√

R − √
Rphot) =

r5 ≈ 0. By the quadratic formula this is equivalent to

R = (√
(a1B

−1/2 + a2B
−1/4 + a3) + a4B

−1/4 + a5

)2
, (25)

for constants ai. One can use the ri values from equations (23) and
(24) to obtain ai algebraically (on the assumption that r5 = 0), then
use those ai values as an initial step in a Gauss–Newton algorithm
to find best-fitting values for the hyperbola as a whole. (In fact, to
achieve convergence it is found necessary to omit the data point
for logB = −1.465). One then has two model versions: a simple
two-branched form involving ri, suitable for cases restricted to one
or other visual regime, and a more complicated expression in ai that
covers the entire range. The parameters are found to be

r1 = 6.505 × 10−4, r2 = −8.461 × 10−4, (26)

r3 = 1.772 × 10−4, r4 = 7.167 × 10−5, (27)

with split-point B = 7.08 × 10−2 cd m−2, and

a1 = 5.949 × 10−8, a2 = −2.389 × 10−7, a3 = 2.459 × 10−7,

a4 = 4.120 × 10−4, a5 = −4.225 × 10−4. (28)

In either case, we can compare the resulting function C = R/A
with the original data set. This is seen in the uppermost curve of
Fig. 6 which shows that both model versions fit the data very well,
and apart from the transition region around B = 7.08 × 10−2 cd m−2

(15.5 mag arcsec−2) they are virtually indistinguishable. One ex-
pects the point-source model to maintain accuracy across the range

Figure 6. Contrast threshold data from table 8 of Blackwell (1946, target
diameters labelled in arcmin), compared with C = R/A calculated using
equations (23), (24), (26) and (27) (dashed lines) and equations (25) and
(28) (solid).

of validity of Ricco’s law, i.e. for target sizes up to the Ricco area.
For daylight conditions this means a diameter of no more than about
an arcminute, but in low light conditions the size increases. This is
seen in the lower curves of Fig. 6, which show that at low light levels
the point-source model remains highly accurate for target diameters
up to about 10 arcmin.

The relation shown in Fig. 5 is also found in other point-source
data sets, such as the mean data values given in table 7 of Blackwell
(1946), the data of Knoll et al. (1946) shown in Fig. 2, or the data
of Siedentopf (1940). In fact, the latter two data sets both show a
smooth short bend between the asymptotes. One can apply the same
procedure to any of these sets to obtain ri and ai values. The Black-
well table 8 values (equations 26–28) will be taken as definitive
because of the authoritative nature of that data set; however, it is
also worth considering the model that arises from the data of Knoll
et al., because of the significance of the Hecht formula, equation
(20). One finds

r1 = 7.310 × 10−4, r2 = −5.162 × 10−4, (29)

r3 = 2.550 × 10−4, r4 = 4.420 × 10−5, (30)

with split-point B = 5.21 × 10−1 cd m−2 (13.3 mag arcsec−2), and

a1 = 6.112 × 10−8, a2 = −1.598 × 10−7, a3 = 1.167 × 10−7,

a4 = 4.988 × 10−4, a5 = −3.014 × 10−4. (31)

The threshold increment illuminance at the eye is
�I = A�B = BR. Using equations (23) and (24), we have

�Iscot = (
r1B

1/4 + r2B
1/2

)2
, (32)

�Iphot = (
r3B

1/4 + r4B
1/2

)2
, (33)

while equation (25) gives the alternative form

�I = (√
(a1B

1/2 + a2B
3/4 + a3B) + a4B

1/4 + a5B
1/2

)2
. (34)

Fig. 7 shows both versions together with the data of Knoll et al.
(1946), from which it can be seen that either form offers consider-
able accuracy. Comparison with Fig. 2 shows that the new model is
substantially better than the ones previously proposed.
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Figure 7. Threshold increment illuminance �I versus background lumi-
nance B for a point-source target: data from Knoll et al. (1946) together with
two model versions. Dotted line is from equations (29), (30), (32) and (33);
solid line is from equations (31) and (34).

Henceforth, only the Blackwell values (equations 26–28) will be
used. It will be noted that the model (equations 32–34) does not have
the correct asymptotic limit as B → 0, since the threshold should
tend to a non-zero value. This defect is not important for naked-eye
astronomical observation, because of the natural brightness of the
sky, but is relevant in telescopic observation, and will be addressed
later.

2.3 Full visibility model

To construct the complete model, it is necessary to find an ana-
lytic expression for C∞, the threshold for large targets. At daytime
luminance levels C∞ is independent of B (reflecting Weber’s law)
and ‘large’ is only a few arcminutes, but at low levels it rises above
6◦, the maximum target size in Blackwell (1946). Taylor (1960a)
attempted to extend Blackwell’s data in order to find C∞ (at detec-
tion probability 0.5) for all background luminance levels, though he
used a lower colour temperature (2360 K), fixed viewing time (6 s)
and a rather different methodology. His results were somewhat in-
consistent with Blackwell’s (Taylor 1960b), with thresholds higher
by a factor of approximately 2.2 for B of the order of 1 cd m−2, and
approximately equal for B of the order of 10−3 cd m−2 or less.

In view of the uncertainty, Taylor (1960b) offered upper and
lower bounds for C∞, subject to a number of assumptions. The
upper bounds will be adopted here, since they are more compatible
with Blackwell’s figures, but with the understanding that the data
are less robust than those used in the previous section for obtaining
the function R. In fact, as shown in Fig. 8, the data display a similar
luminance dependence to the one found for point sources, though
now it is C∞ rather than

√
R that is plotted against B−1/4, and the

hyperbola has a more gradual bend, so that it is less accurate to re-
gard it as consisting of two linear sections. The high-B asymptote in
this case is horizontal because of Weber’s law. Regression gives the
coefficients as before (the data point for B = 3.426 × 10−4 cd m−2

being omitted to ensure convergence of bi). This produces

Cscot
∞ = k1B

−1/4 + k2, (35)

Cphot
∞ = k3B

−1/4 + k4, (36)

Figure 8. Large-target contrast threshold, C∞, as a function of luminance
B−1/4. Data from table 2 of Taylor (1960b). Dashed line is equations (35)–
(38); solid line is equations (39) and (40).

k1 = 7.633 × 10−3, k2 = −7.174 × 10−3, (37)

k3 = 0, k4 = 2.720 × 10−3, (38)

with split-point B = 3.54 × 10−1 cd m−2, and

C∞ = √
(b1B

−1/2 + b2B
−1/4 + b3) + b4B

−1/4 + b5, (39)

b1 = 9.606 × 10−6, b2 = −4.112 × 10−5, b3 = 5.019 × 10−5,

b4 = 4.837 × 10−3, b5 = −4.884 × 10−3. (40)

The same relation holds for the lower-bound series in Taylor
(1960b), leading to slightly different coefficients. The full model
is then constructed by smoothly joining the asymptotic sections
Clow = R/A (with equations 23 and 24, or 25) and Chigh = C∞ (with
equations 35 and 36, or 39):

C = ((R/A)q + Cq
∞)1/q , (41)

where q is a parameter determined for best fit with the data. By
construction, equation (41) has the correct asymptotic behaviour
for large and small A, with q controlling the intermediate bend. At
low light levels (logB ≤ −0.5), it is found that a constant value
of q is sufficient; however at higher levels, one requires q to be a
function of luminance. Because of the discrete nature of the data
it is not possible to specify an exact transition, but the following
discontinuous function is found to be adequate:

q = 1.146 − 0.0885 logB, B ≥ 3.40 cd m−2 (42)

q = 0.8861 + 0.4 logB, 0.193 ≤ B < 3.40 cd m−2 (43)

q = 0.6, B < 0.193 cd m−2. (44)

The various forms of the model are shown in Fig. 9. These show
that at high or low light levels, it is sufficient to use the simpler form
of the model involving coefficients ri and ki, while at intermediate
(mesopic) levels one requires the more complicated model involving
ai and bi coefficients. For astronomical visibility, it is sufficient to
use the scotopic model, whose upper limit of validity can be taken
as approximately 0.1 cd m−2 (15 mag arcsec−2) for achromatic
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2610 A. Crumey

Figure 9. Contrast threshold versus target size (equation 41) for luminances
at intervals of one log-unit, B = 3.426 × 10−5–3.426 × 103 cd m−2 (top
to bottom). Data from Blackwell (1946). Top four curves modelled by
equations (23), (26), (35), (37) and (44); middle two by equations (25), (28),
(39), (40), (42) and (43); bottom three by equations (24), (27), (36), (38)
and (42).

sources. Consequently, the other model forms will not be considered
further in this paper.

It has already been noted that the model becomes invalid at very
low luminance, since �B = BC with C given by equation (41)
does not tend to a non-zero limiting value �B0 as B → 0. One
can however join the existing model for �B to the zero-background
asymptote �B0 with the same technique of geometric combination
that has been used to join the small and large-target asymptotes,
i.e.

�Bfull = (�Bn
0 + �Bn)1/n. (45)

To put this into effect, one requires �B0 as a function of A. The
data in table 4 of Blackwell (1946) show a linear relation yielding
�B0 = 10−7.9591A−0.8468, which tends to zero for large A. However,
the measurements are only for target diameters 3.6−121 arcmin,
and one expects there to be a maximum A beyond which there will
be little or no further improvement. It can be estimated by recalling
that for human vision the background becomes effectively zero at
around 10−5 cd m−2 (Fig. 3), for which the Ricco area (equation
22) is 8.94 × 10−4 sr, or 116 arcmin diameter. Hence, the lowest
measured threshold for 121 arcmin (�B = 10−5.4162 cd m−2) can
reasonably be taken as limit, and incorporated through geometric
combination (with some exponent p), to give �B0, which is then
used in equation (45). The choice of exponents is somewhat arbitrary
because of the lack of data for 0 < B < 3.426 × 10−5 cd m−2, but the
choice n = 9, p = 6 proves adequate. Then (dropping the subscript
‘full’)

�B =
[
(10−47.7546A−5.0808 + 10−32.4971)1.5

+ B9
((

r1B
−0.25 + r2

)1.2
A−0.6 + (

k1B
−0.25 + k2

)0.6
)15

]1/9

,

(46)

which is shown in Fig. 10 (with the zero-background data plotted
at logB = −7). In fact, this model version will not be considered
further in this paper, since the abrupt transition to an effectively zero
background means that in practical applications sufficient accuracy

Figure 10. Threshold increment �B at low luminance levels, with target
diameters in arcmin. Data from Blackwell (1946) tables 4 and 8; dotted lines
show equation (46).

can be achieved using the simpler model version with a cut-off at
10−5 cd m−2. So the model will henceforth always be assumed to
be

C =
[((

r1B
−1/4 + r2

)2
/A

)3/5
+ (

k1B
−1/4 + k2

)3/5
]5/3

, (47)

r1 = 6.505 × 10−4, r2 = −8.461 × 10−4, (48)

k1 = 7.633 × 10−3, k2 = −7.174 × 10−3, (49)

for 10−5 ≤ B ≤ 3.426 × 10−2 cd m−2, and

C = [(ξ1/A)3/5 + ξ2)3/5]5/3, (50)

ξ1 = (105/4r1 + r2)2 = 1.150 × 10−4, (51)

ξ2 = (105/4k1 + k2) = 1.286 × 10−1, (52)

for 0 < B ≤ 10−5 cd m−2.

3 A STRO NOMI CAL VI SI BI LI TY

3.1 Naked-eye

For naked-eye star visibility, it is sufficient to use the A → 0 limit of
the threshold curve, and the natural brightness of the sky means that
the zero-background limit is not required. Blackwell’s backgrounds
can be taken as sufficiently representative of the night sky without
excessive light pollution. Then for scotopic vision the point-source
formula equation (32) applies with Blackwell values, equation (26),

�I = F (6.505 × 10−4B1/4 − 8.461 × 10−4B1/2)2, (53)

where �I is the illuminance of the star in the absence of atmosphere
(which contributes to the increment, as explained earlier), and the
field factor F has been introduced, assumed to include all factors
associated with the target and medium, as well as laboratory scaling
(for actual detection) and the personal factor of the observer. B is
for the area immediately surrounding the target, and it is assumed
that the target remains visible long enough for scintillation to be
excluded. In astronomical units (magnitude limit m0, sky surface
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Figure 11. Naked-eye limiting magnitude m0 as a function of sky surface
brightness μsky. Solid line is equation (53) with F = 2; dashed line is Hecht’s
model (equation 20) without rescaling.

brightness μsky, zero-point Z = 2.54 × 10−6 lux), equation (53) is
well approximated by the linear functions

m0 = 0.3834μsky − 1.4400 − 2.5 logF, (54)

if 20 < μsky < 22 mag arcsec−2 (maximum error 0.01 mag),

m0 = 0.4260μsky − 2.3650 − 2.5 logF, (55)

if 21 < μsky < 25 mag arcsec−2 (maximum error 0.04 mag).
For a dark sky with B = 2 × 10−4 cd m−2 (21.83 mag arcsec−2),

equation (53) gives a magnitude limit m0 = 6.93 − 2.5 logF. This
would suggest that in actual observing situations F is typically
somewhere between 2.4 and 1.4 (giving limits 5.98–6.57 mag), with
7 mag corresponding to F = 0.94. In view of the historical evidence
discussed earlier, it would seem that for illustrative purposes a no-
tional value F = 2 (limit 6.18 mag) could be taken as a typical
overall field factor. Fig. 11 shows limiting magnitude as a function
of sky surface brightness from equation (53) with F = 2. Also plot-
ted is equation (20) converted to astronomical units (without field
factor rescaling). Either curve can be moved up or down by a choice
of overall field factor; what is significant is the incorrect curvature
of Hecht’s formula remarked earlier (reversed now because of the
change to astronomical units).

The A → ∞ asymptote of the threshold curve, C∞, gives the
lower limit of visibility for large targets. From equations (1), (35)
and (37), the above-atmosphere luminance limit is

�B∞ = F (7.633 × 10−3B3/4 − 7.174 × 10−3B). (56)

In astronomical units, this gives the limiting surface brightness μ∞
for effectively infinite targets; with μsky = 21.83 mag arcsec−2 it is
μ∞ = 24.94 − 2.5 logF. Equation (56) is well approximated by

μ∞ = 0.6864μsky + 9.9325 − 2.5logF, (57)

if 18 <μsky < 22 mag arcsec−2 (maximum error 0.02 mag arcsec−2).
For a general target of finite size, the threshold increment (from
equations 1, 41, 53 and 56) is

�B =
((

�I

A

)q

+ �Bq
∞

)1/q

, (58)

and the Ricco area as conventionally defined (equation 22 with
equations 23, 35, 53 and 56) is

AR = (r1B
−1/4 + r2)2

(k1B−1/4 + k2)
= �I

�B∞
. (59)

Hence, equation (58) can be written in astronomical units as

μlim = μ∞ − 2.5

q
log

((
AR

A

)q

+ 1

)
, (60)

or, since the magnitude limit m0 = −2.5 log(AR�B∞/Z),

μlim = m0 − 2.5

q
log

(
1

αq
+ 1

α
q
R

)
+ 5 log60, (61)

for target and Ricco areas α, αR in arcmin2 (and μlim

in mag arcsec−2). By definition, the target has magnitude
mlim = μlim − 2.5 logα − 5 log60, hence

mlim = m0 − 2.5

q
log

((
α

αR

)q

+ 1

)
. (62)

The Ricco radius rR = √
αR/π is well approximated by

rR = 5.21μsky − 76.2, (63)

for 21 ≤μsky ≤ 22 mag arcsec−2 (maximum error 0.05 arcmin). This
is considerably larger than the critical visual radius rcrit (Blackwell
1946), though either is only an approximation of the size at which an
object becomes clearly extended (Taylor 1961). For B = 2 × 10−4 cd
m−2 (μsky = 21.83 mag arcsec−2), rcrit is approximately 4.5 arcmin
(from fig. 17 of Blackwell 1946) while rR = 37.6 arcmin. From
equations (60) and (44), the threshold surface brightness for a Ricco-
area target is −4.167 log(2) = 1.25 mag arcsec−2 brighter than μ∞,
and from equation (62) the magnitude is likewise 1.25 mag brighter
than m0. This reflects the familiar fact that extended sources must
be sufficiently brighter than the point-source limit in order to be
seen as non-stellar, though the criterion is not stringent. As target
size decreases, the magnitude threshold approaches m0, while with
increasing size the surface-brightness threshold approaches μ∞,
illustrating the fact that magnitude is a good visibility indicator for
small targets, while surface brightness is better for large ones.

This can be applied to the visibility of M33. Weaver (1947) cited
Lundmark’s ability to see the galaxy without aid as an example of
exceptional acuity, but at a Bortle Class 1 site it is an ‘obvious naked-
eye object’, and it is only in the fifth out of nine classes (‘suburban
sky’) that M33 is considered undetectable (Bortle 2001). Tables 2
and 4 of De Vaucouleurs (1959) give the galaxy’s total magnitude
as 5.8, suggesting easy visibility at a dark site, but the foregoing
remarks imply that a fainter stellar limit would be required. The
data give an equivalent circular radius of 25.3 arcmin, but this is to
an isophote 25.3 mag arcsec−2, fainter than the eye can detect.

Fig. 12 plots surface brightness versus log-area, so any line
μ = 2.5 logα + c is a line of constant magnitude c − 5 log60. Data
points show the enclosed area and average surface brightness for
successive isophotes of M33 (with an interpolated curve, dashed)
as well as the threshold curve equation (58) (curve A, solid) for a
background μsky = 21.83 mag arcsec−2 and F = 1.378, the latter
parameter having been chosen so that the two curves are just touch-
ing, i.e. the target is at threshold. Raising F will shift the threshold
curve downwards, so the target becomes invisible. The coordinates
of the intersection point give the visible size and brightness of the
galaxy: equivalent circular radius 18.7 arcmin, surface brightness
22.43 mag arcsec−2, magnitude 5.93. The Ricco asymptote is a line
of constant magnitude 6.59 (the stellar limit required for the target
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Figure 12. Surface-brightness profiles of M31 (De Vaucouleurs 1958) and
M33 (De Vaucouleurs 1959), with threshold curves A, B calculated from
equation (58) such that each galaxy is just visible. Curve A asymptotes
indicate the limiting magnitude and surface brightness for M33 to be just
visible.

to be visible) while the horizontal asymptote shows a large-target
limit 24.59 mag arcsec−2.

The same procedure can be repeated for different values of the
surrounding sky background μsky (the zenith value would generally
be darker). Visibility at F = 2 is found to require μsky = 22.63 mag
arcsec−2, darker than the natural sky. For 21 ≤ μsky ≤ 22 mag
arcsec−2, F ≈ 0.5482μsky − 10.585 (maximum error 0.02). As
μsky increases within this range, the meeting point of the curves
moves very little (slowly upwards), so that for all μsky the visi-
ble target has total magnitude 5.9 while the required stellar limit
falls slowly from 6.67 to 6.57 mag. The visible radius and surface
brightness hardly change as darkness increases within the stated
range (18.5−18.75 arcmin, 22.41−22.44 mag arcsec−2); both dif-
fer substantially from the figures measured to the 25.3 mag arcsec−2

isophote, and instead refer to an (interpolated) isophotal limit
23.71−23.75 mag arcsec−2. Some caution is necessary since the
target is neither uniform nor circular, and the edge is actually seen
against the (invisible) remainder of the galaxy rather than the sky,
but the general conclusion (given the low F values required) is that
M33 cannot reasonably be considered an easy target for average ob-
servers, even under very dark skies. Since the condition of its being
just visible is a sustained limiting stellar magnitude of approxi-
mately 6.6 (certainly achievable under dark skies by observers with
above-average acuity), the required magnitude limit can be taken as
a sufficient sky quality indicator. That figure, which can be thought
of as the galaxy’s ‘effective’ visual magnitude, is consistent with the
visual estimate of approximately 7 mag made by Holetschek (1907)
and accepted by Hubble (1926). As noted earlier, the galaxy was
included by Heis (1872) in his naked-eye star atlas which had stellar
limit 6.7 mag. Weaver (1947) gave the galaxy’s visual magnitude as
6.8 mag.

A similar procedure can be applied to M31 using data from De
Vaucouleurs (1958). It is found that with F = 2 the galaxy should
become just visible at approximately μsky = 19.2 mag arcsec−2

(curve B on Fig. 12), with visible area approximately 2100 arcmin2

and effective visual magnitude 5.2. This must be treated with cau-
tion since the luminance is close to mesopic; however, the general
prediction is that M31 should be an easy naked-eye target for av-

erage observers under moderately dark conditions, which accords
with experience.

One should also consider the (B − V) colour indices of M31
and M33, given by De Vaucouleurs as 0.91 and 0.55. Cinzano et al.
(2001) took the typical colour index of naked-eye stars as 0.7, and if
this is considered the standard by which visual threshold is assessed
then (from equation 18) the effective magnitude of M31 should be
lowered by 0.06 while that of M33 should be raised by 0.04. If
colour index 0 is the standard then the effective magnitudes of M31
and M33 are instead lowered by 0.25 and 0.15.

3.2 Point-source telescopic visibility

For stars seen through a telescope, various authors (Garstang 2000)
proposed that the limiting magnitude would be given by

m = N + 5 logD, (64)

where D is the entrance pupil diameter and N is a constant. If D is
in centimetres then values of N proposed in the literature cited by
Garstang range from 6.8 to 8.7. In general, however, one must also
take account of the background luminance, the magnification M (or
exit pupil diameter d = D/M), and field factors, in which case N
would need to be replaced by a function of these. Schaefer (1990)
did this using Hecht’s formula (equation 20). The same will now
be done using the new model, giving results which can be tested
against existing data.

Assume the same conditions under which equation (53) applies.
A star at threshold in a telescope will have apparent illuminance at
the eye

�Ia = FTFMF
(
r1B

1/4
a + r2B

1/2
a

)2
, (65)

where Ba is the apparent sky luminance in the eyepiece (the natural
sky background darkened by magnification and light loss in the
telescope), and FT and FM are field factors associated with telescope
use, with FT being the product of magnification-independent factors
and FM the product of magnification-dependent ones. As discussed
in Section 1.6.4, it should generally be sufficient to assume FT = √

2
and FM = 1. Equation (65) becomes invalid if magnification renders
star images no longer point like, or darkens the sky below about
10−5 cd m−2. The latter effect will be incorporated by imposing a
zero-background cut-off.

Let �I be the increment illuminance at the entrance pupil of
a star at threshold in the eyepiece, and define δmin = min(d, p),
δmax = max(d, p), for exit and eye pupil diameters d and p. Let F−1

t

be the telescope’s transmittance. Then, following Tousey & Hulburt
(1948),

Ba =
(

δmin

p

)2
B

Ft
, (66)

�Ia =
(

D

δmax

)2
�I

Ft
, (67)

hence (from equation 65)

�I =
(

δmax

D

)2

FtFMFTF
(
r1Ba

1/4 + r2Ba
1/2

)2
. (68)

Using equation (55), a very good approximation is found to be

m0 = 0.426μsky − 2.365 + 5 log(D/δmax) − 2.131 log(δmin/p)

−1.435 logFt − 2.5 log(FMFTF ), (69)
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Figure 13. Magnitude limit m0 as a function of sky brightness μsky, cal-
culated from equation (68) (with FtFMFTF = 3.77, p = 7 mm) for a tele-
scope with clear aperture 100 mm at various magnifications. The cut-off
mcut = 12.7 mag is due to the background in the eyepiece becoming effec-
tively zero.

which gives the limit m0 at magnification M = D/p. The threshold
is assumed constant for Ba ≤ 10−5 cd m−2, which occurs for exit
pupil d ≤ d0, where

d0 = p

√
10−5Ft

B
, (70)

the cut-off threshold being

�Icut = ζ
( p

D

)2
FtFMFTF, (71)

where ζ = (10−5/4r1 + 10−5/2r2)2 = 1.150 × 10−9 lx. Hence, the
limiting magnitude for the telescope is

mcut = 5 logD − 2.5 log(Z−1ζp2FtFMFTF ), (72)

where Z = 2.54 × 10−6 lx. Taking FM = 1, FT = √
2 and typical

values p = 7 × 10−3 m, Ft = 1.33 (75 per cent transmittance) gives

mcut = 5 logD + 8.45 − 2.5 logF, (73)

for D in cm. This is to be compared with equation (64). The proposed
range of values for N would correspond to F ranging 0.79–4.55,
while with the notional value F = 2 we obtain N = 7.69, which
agrees with Sinnott’s figure 7.7 cited by Garstang (2000) as the best
value for general use. Fig. 13 shows the limit as a function of sky
surface brightness for a telescope with entrance pupil 0.1 m.

Equations (69) and (72) imply that the graph of m0 versus −logd
consists of three straight sections with gradients 5 (d ≥ p), 2.131
(p ≥ d ≥ d0) and 0 (d ≤ d0). This can be tested against the data of
Bowen (1947) who recorded his threshold for various exit pupils
using refractors of aperture 0.33-inch (8.38 × 10−3 m), 6-inch
(1.52 × 10−1 m) and the 60-inch (1.52 m) reflector at Mount Wilson,
with entrance pupil diameter D = 1.39 m (Seares 1914). The most
extensive results were for the 6-inch telescope, with data falling
clearly into three sections fitted by

m0 = −5 logd + 1.02,

m0 = −2.131 logd + 7.57,

m0 = 13.96. (74)

This is consistent with targets having been effectively equivalent
(stars of roughly equal colour index and zenith angle), observed
under effectively uniform conditions, so that F can be regarded as
constant. The intersection of the first two lines gives Bowen’s pupil
diameter as 5.2 mm (consistent with his age, 49 yr) while that of the
second pair fixes d0 = 1.0 mm implying B/Ft = 2.70 × 10−4 cd m−2

(from equation 70). Equation (68) then gives
FtFMFTF = 4.78.

The 60-inch data imply p = 5.0 mm, consistent with the 6-inch
figure (which is retained), but the highest magnifications seem to
suggest a zero-background cut-off of 18.0 mag, which by equation
(70) would produce an unreasonably low transmittance for any rea-
sonable value of B. In fact, Bowen considered the limit for highest
magnification to be suspect due to poor seeing: the stellar discs
would have had a diameter of more than 10 arcmin (the limit of
validity of the point-source model) and Bowen found them ‘notice-
ably fuzzy’. This will be returned to once the general model for
finite target sizes has been presented. Meanwhile, the more reliable
p ≥ d ≥ d0 line for the 60-inch telescope is

m0 = −2.131 logd + 12.19 (75)

which with equations (69) and (74) (assuming FMFT to be uniform
for all telescopes) yields

1.435 log

(
F 60in

t

F 6in
t

)
= 7.57 − 12.19 + 5 log

(
D60in

D6in

)
, (76)

hence F 60in
t = 1.35F 6in

t . For the 0.33-inch telescope, there are only
3 magnitude measurements, the lowest pair producing an anomalous
and improbably high pupil diameter 7.3 mm, suggesting inaccuracy
in the data. Using equation (72) with the highest measurement,
one finds F 0.33in

t = 0.90F 6in
t . The predicted thresholds for all three

telescopes can then be plotted using equations (68) and (71), shown
in Fig. 14 to give very good agreement with the data. Table 1 of
Schaefer (1990) contains predictions for all except the lowest 0.33-
inch limit; when the dubious highest 60-inch limit is also excluded
Schaefer’s model has rms error 0.37 mag, compared with 0.09 mag
for the present model.

Figure 14. Magnitude limit m0 as a function of exit pupil d for three
telescopes (labelled by aperture). Data from Bowen (1947), modelled with
equations (68) and (71). The anomalous data point for the 60-inch at highest
magnification, attributable to the stellar disc being no longer point like, is
modelled in Section 3.3.
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The minimum possible value for Ft would have been 1.04 (1 per
cent reflectance at four coated glass-air surfaces for a refractor with
no light scattering). From the B/Ft value for the telescope with
lowest Ft (0.33 inch), this produces a lowest bound B = 3.12 ×
10−4 cd m−2 (21.35 mag arcsec−2). Realistically estimating 90 ±
5 per cent transmittance for the 0.33-inch telescope, the previously
calculated ratios give transmittances 81 ± 4.5 per cent for the 6-inch
and 60 ± 3.3 per cent for the 60-inch telescopes, the latter implying
a reflectance of approximately 85 per cent at each of the three
aluminized mirrors, a plausible figure not far below the maximum
value of 89 per cent. The figure for the 6-inch refractor could suggest
it was in need of cleaning, or did not have antireflection coating as
Bowen stated (having the equivalent of 95 per cent transmittance at
each air-glass surface), or perhaps the clear aperture was actually
slightly less than the assumed value.

The figures imply a sky brightness B = 3.34 ± 0.19 ×
10−4 cd m−2 (μsky = 21.27 ± 0.06 mag arcsec−2). Assuming
FMFT = √

2 as usual, F is then 2.74 ± 0.15, somewhat higher
than the ‘typical’ value 2 but consistent with Bowen’s age, and giv-
ing his naked-eye limit (from equation 53) as 5.62 ± 0.04 mag. If
he had recorded his naked-eye limit then the transmittances and sky
brightness could have been determined from that.

Garstang (2000) analysed Bowen’s data using a modified form of
the Hecht equation, employing the enumerated field factor treatment
of Schaefer (1990). He made estimates of various parameters in his
model, and arrived at a predicted sky brightness B = 1.05 × 10−3

cd m−2 (μsky = 20.03 mag arcsec−2), substantially brighter than
the new estimate. Garstang made an airmass correction based on
a guess of the zenith angle of observed stars, to arrive at a zenith
brightness B = 8.59 × 10−4 cd m−2 (μsky = 20.24 mag arcsec−2).
When the same correction is made to the new figure, one obtains
B = 2.45 × 10−4 cd m−2 (μsky = 21.61 mag arcsec−2).

Garstang (2004) calculated the sky brightness at Mount Wilson
throughout the twentieth century using his light-pollution model,
for which a crucial parameter is the average light emission per head
of population. Garstang estimated this parameter, guided partly by
his analysis of Bowen’s data, producing results somewhat darker
than his previous work (20.82 mag arcsec−2 for 1950), but still
considerably brighter than the new estimate. The present finding
suggests that light emissions from Los Angeles in the first half of
the twentieth century were lower than Garstang assumed, and that
the growth of light pollution in the second half was far more rapid
than he calculated.

3.3 The telescopic threshold curve

The threshold for objects of angular area A, seen against a sky of
luminance B, through a telescope with magnification M, is calcu-
lated by transforming equation (41) to take account of the change of
target size and background luminance imposed by the instrument,
as well as the field factors discussed previously:

C = φ

((
Ra

Aa

)q

+ Cq
a

)1/q

, (77)

where φ ≡ FTFMF and

Ra =
(

r1

B
1/4
a

+ r2

)2

, (78)

Aa = M2A, (79)

Ca = k1

B
1/4
a

+ k2, (80)

with ri, ki, q and Ba given by equations (26), (37), (44) and (66).
The telescopic threshold curve has the same general shape as the
naked eye one, but with shifted asymptotes. The ‘telescopic Ricco
area’, ATR, can be defined as the area on the sky of a target whose
image in the eyepiece has Ricco area with respect to the apparent
background, i.e.

ATR = Ra

M2Ca
. (81)

Then, equation (77) can be rewritten in terms of the large-target and
point-source limits, �B∞ = φBCa, �I = φBRa/M2,

�B = �B∞

((
ATR

A

)q

+ 1

)1/q

, (82)

or

�B = �I

(
1

Aq
+ 1

A
q
TR

)1/q

, (83)

which in astronomical units (α, αTR in arcmin2, μlim in mag
arcsec−2) give the telescopic equivalents of equations (60) and (61):

μlim = μ∞ − 2.5

q
log

((αTR

α

)q

+ 1
)

, (84)

μlim = m0 − 2.5

q
log

(
1

αq
+ 1

α
q
TR

)1/q

+ 5 log60, (85)

μ∞ = μsky − 2.5 log(φCa), (86)

m0 = μsky + 2.5 log

(
π2

6041802
.

M2

φRaB

)
. (87)

Thus, a threshold target of area α has magnitude

mlim = m0 − 2.5

q
log

((
α

αTR

)q

+ 1

)
. (88)

The zero-background cut-off imposed at Ba = 10−5 cd m−2

corresponds to an eyepiece Ricco area Ra/Ca = (105/4r1 +
r2)2/(105/4k1 + k2) = 8.941 × 10−4 sr or 10 567 arcmin2.
Then, the zero-background threshold is equation (84) or (85)
with αTR0 = 10 567/M2

0 arcmin2, where (from equation 70) M2
0 =

105BD2/(p2Ft).
Bowen (1947) obtained a limit 18 mag for stars seen with the 60-

inch telescope at M = 1500, rather than the predicted point-source
limit 18.7 mag. From Fig. 14, it can be seen that this was against an
effectively zero background. With the parameters derived earlier,
one finds αTR0 = 7.012 × 10−3 arcmin2, and equation (88) can be
solved for α (with m0 − mlim = 0.7). If this is interpreted as the area
of the Gaussian stellar disc (with due caution regarding the target’s
non-uniformity), then it gives the diameter as 3.0 arcsec, and from
Section 1.6.2 the FWHM seeing is estimated as 3.0/2.8 = 1.1 arcsec,
entirely consistent with Bowen’s remark that it was ‘about average’.

The model can be applied to the observations of William Her-
schel, who compiled three catalogues of ‘nebulae’ (mostly galax-
ies) discovered between 1783 and 1802 with a telescope which had
an 18.7-inch (475.0 mm) diameter speculum mirror and ‘sweep-
ing power’ M = 157 (Herschel 1912, vol. 1, p. 260). From 1786
he used the telescope in ‘front-view’ mode, without a secondary
mirror (Herschel 1912, vol. 1, p. xlii) so that the entrance pupil
was equal to the full aperture (assuming his head did not intrude)

MNRAS 442, 2600–2619 (2014)
Downloaded from https://academic.oup.com/mnras/article-abstract/442/3/2600/1052389
by guest
on 05 January 2018



Contrast threshold and visibility 2615

and the exit pupil diameter was d = 3.03 mm. In 1801, by look-
ing at the star Vega through artificial pupils of various sizes, he
measured his eye pupil as 0.2 inch (5.08 mm; Herschel 1912, vol.
2, p. 585). He visually measured the reflectance of his mirror as
67 per cent and determined the overall transmittance (in front-view
mode with a single-element eyepiece) as 63.8 per cent (Herschel
1912, vol. 2, p. 40), very close to the modern theoretical figure
0.68 × 0.962 = 62.7 per cent, which gives Ft = 1.6 for his tele-
scope at best performance. The sky brightness would have varied
during the observing period due to solar activity, but sunspot data
are sparse (Zolotova & Ponyavin 2011). The figure B = 2 × 10−4

cd m−2 (21.83 mag arcsec−2) will be taken as an approximation.
From equation (70), this gives d0 = 1.45 mm with M = 328.

If it is assumed as before that φ = √
2F , where F is the naked-eye

field factor, then φ can be determined from Herschel’s naked-eye
limiting magnitude. An indication of this is that he found Uranus
(5.9 mag at its faintest) a near-threshold object (Herschel 1912, vol.
1, p. 106), but more precise is his remark on double star H I 69
(CCDM J07057+5245AB) which he discovered in 1782: ‘in a very
clear evening it may just be seen with the naked eye’ (Herschel 1912,
vol. 1, p. 333). This system, which Herschel would have been able to
view almost exactly at the zenith, has integrated magnitude 6.12 and
colour index 0.1. The average colour index of objects in the NGC is
0.85 (Steinicke 2014a), for which the corresponding limit would be
5.92 (from equation 18); but Herschel may have been able to see ob-
jects slightly fainter than H I 69. As an approximation, his limit will
be taken as 6.0 mag (with respect to assumed colour index 0.85).

It will be noted that nearly 20 years elapsed between Herschel’s
naked-eye star observation (aged 44) and his measurement of his
eye pupil (aged 63), and it is entirely possible that both figures
would have changed over that period. One could also question
the assumption φ = √

2F since the factors are not for equivalent
search procedures: Herschel’s telescopic search was for objects not
previously known, whereas his naked-eye observation was of a star
whose position he knew in advance. Moreover, the front-view mode
would have introduced aberration because the mirror was viewed at
an angle to the optical axis, and more generally his telescope cannot
have been optically perfect. Nevertheless, the stated figures will be
adopted for calculation purposes.

From equation (53) with the assumed sky brightness, we find
F = 2.36. From equation (87) this implies that Herschel’s limit for
stars seen with the telescope at sweeping power M = 157 would
have been 15.66 mag in front-view mode and 0.24 mag poorer in
Newtonian mode (assuming 67 per cent reflectance for the sec-
ondary, and without correction for the central obstruction whose
size is not recorded). This is consistent with the magnitude limit
of his catalogue: out of roughly 2500 nebulae Herschel discovered,
only 7 are 15.0 mag or fainter (Steinicke 2014b), down to a mini-
mum of 15.5 mag for NGC 2843 and NGC 4879, the latter being a
misidentified star. For verifying objects, Herschel sometimes used
M = 240 (Herschel 1912, vol. 1, p. 268), with a predicted front-
view limit 16.08 mag. The cut-off for M ≥ 328 would have been
16.39 mag.

Inserting the parameter values into equation (84) gives Herschel’s
telescopic threshold curve at the sweeping power he used:

μ157 = 23.18 − 4.167 log(0.468α−0.6 + 1). (89)

It is difficult to verify this precisely since astrophysical data are
skewed by isophotal limit, and Herschel needed only to see the
bright centre of an object in order to detect it. In view of these limi-
tations, Fig 15 plots all 2136 Herschel objects for which magnitude
and area data are given in Steinicke (2014a,b), without correction

Figure 15. Objects found by William Herschel, plotted by surface bright-
ness μ versus area α. 91.7 per cent lie below his predicted threshold curve
(equation 89); some extreme outliers (labelled by NGC number) are dis-
cussed in the text.

for colour index or zenith angle. It can be seen that the great major-
ity (91.7 per cent) lie below the predicted threshold. Only 3.2 per
cent are more than 0.25 mag arcsec−2 above it.

Some extreme outliers are marked on Fig. 15 by their NGC
numbers; in all cases, Herschel did not see the complete object.
Herschel estimated NGC 4395 (H V 29) as ‘10 arcmin long, 8
or 9 arcmin broad’ (Herschel 1912, vol. 1, p. 359), which is only
about 60 per cent of its actual area (three of its H II regions became
designated as separate nebulae in the NGC). He saw NGC 4861 (H
IV 30) as ‘two stars, distance 3 arcmin, connected with a very faint
narrow nebulosity’ (Herschel 1912, vol. 1, p. 356), but the galaxy
is approximately 40 per cent longer. He described NGC 7681 (H II
242) as ‘small’ (Herschel 1912, vol. 1, p. 275) and NGC 474 (H III
251) as ‘very small’ (Herschel 1912, vol. 1, p. 284).

Fig. 16 shows NGC objects which Herschel failed to discover
(3431 objects with declination higher than −33◦, unknown to

Figure 16. NGC objects missed by William Herschel. These are generally
smaller, and nearer to his threshold, than those in Fig. 15. 90.6 per cent of
missed objects below the curve are smaller than the average size of objects
he detected.
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Herschel, for which magnitude and area data are available in
Steinicke (2014a,b), using Epoch 2000.0 coordinates and without
atmospheric or photometric correction). Herschel did not sweep
the entire sky above his horizon (Steinicke 2010, p. 34), and this
can account for some of the omissions. Others could have been
missed because of low declination, crowded search fields, prox-
imity to glare sources (bright stars), limited search time or human
error. In general, however, it can be seen that the missed objects are
smaller and nearer threshold than the discovered ones. This can be
quantified using ‘visibility level’, defined as the ratio of an object’s
contrast to the threshold level (Adrian 1989), for which the corre-
sponding astronomical quantity is the object’s distance (L) below
the curve. For the objects in Fig. 15 mean L is 0.69, and mean logα

is 0.28, whereas for the missed objects mean L is 0.35, mean logα is
−0.21. Missed objects with α and L larger than the mean values for
discovered ones, and which therefore should have been easy targets
for Herschel, amount to only 3.6 per cent of those he did not see,
illustrating the thoroughness of his search.

3.4 Further applications

There has been interest among visual astronomers in the concept
of ‘optimum magnification’ (Lewis 1913; Clark 1990; Garstang
1999). The contrast of an extended object seen in a telescope is
independent of magnification, but the threshold is dependent on im-
age size and background, both of which change with magnification.
Hence, an object may be invisible at low or high power but visible
in some intermediate range. This is represented in Fig. 17 which
shows threshold curves for a 100 mm telescope at magnifications
20, 75 and 200 (with parameters chosen for convenience of illustra-
tion), and a single data point representing a hypothetical non-stellar
object. Raising power shifts the Ricco asymptote to the left (in-
creasing the point-source limit) but lowers the horizontal asymptote
(decreasing the surface-brightness limit). The object is predicted to
be visible at magnification 75 but not at the lower and higher pow-
ers. The model could be used to obtain optimum magnifications
for actual objects, but such predictions are of limited value, both
because of the lack of appropriate data at the correct isophotal limit,
and (most importantly) because targets are in general not uniform.

Figure 17. Threshold curves for a 100 mm telescope at various magnifica-
tions (with μsky = 21.4 mag arcsec−2, p = 6 mm, Ft = 1.04, φ = 3.55). The
data point is for an object predicted to be visible at × 75 but invisible at the
lower and higher powers.

Figure 18. Threshold curves for various viewing situations. Curve A is for
10 × 50 binoculars at a dark site (μsky = 21.5 mag arcsec−2), curve B is a
6-inch refractor with exit pupil 3 mm at the same site, and curve C is a 16-
inch reflector with the same exit pupil at a light-polluted site (μsky = 20 mag
arcsec−2). Data points are for Messier galaxies in the Virgo Cluster.

It is however interesting to note the finding of Leibowitz (1952)
that at low light levels visual acuity is greatest for a pupil size of
approximately 3 mm. This corresponds to the exit pupil chosen by
William Herschel for his nebula sweeps, which he presumably ar-
rived at using trial and error. The same optimum exit pupil was
found independently by Langley (2004).

It is interesting to make general comparative predictions of instru-
ment performance. Fig. 18 shows threshold curves for a single user
(p = 7 mm, F = 2) at two sites, one light polluted (μsky = 20 mag
arcsec−2, naked-eye limit 5.5 mag), the other dark (μsky = 21.5 mag
arcsec−2, 6.0 mag). The instruments are 10 × 50 binoculars and a
6-inch refractor (D = 150 mm) at the dark site, and a 16-inch reflec-
tor with 25 per cent central obstruction (D = 393 mm) at the light
polluted one, with assumed transmittances 85, 95 and 75 per cent,
respectively. Both telescopes have exit pupil 3 mm. Data are also
plotted for the 16 Messier galaxies in the Virgo Cluster (Steinicke
2014a), subject to the usual caveats regarding isophotal limit and
non-uniformity, but providing a reasonably homogeneous sample
for illustrative purposes. It can be seen that for any target larger
than 1 arcmin2 the 16 inch is outperformed by the smaller telescope
at the darker site: light pollution renders it ineffective for view-
ing galaxies. Binoculars outperform the 6 inch for very large, low
surface-brightness objects; however, the 6 inch will show numerous
smaller targets. Since the effect of varying the field factor F is to
move all the curves up or down equally, this qualitative result will
remain the same for individuals whose naked-eye limit is higher or
lower than the chosen figure.

4 C O N C L U S I O N S

A new way has been presented for modelling achromatic thresh-
old visibility data such as that of Blackwell (1946) or Knoll et al.
(1946), and has been shown to represent the laboratory data more
accurately than previous models. For applications at low light lev-
els, a photometric correction is needed; this has been calculated
for scotopic vision, applicable to astronomical observations within
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approximately 1 mag of threshold at sites without excessive light
pollution. The new point-source model matches the data of Bowen
(1947) more accurately than previous attempts by Schaefer (1990)
and Garstang (2000). The model for extended targets offers new in-
sights into the visibility of ‘deep sky objects’ such as galaxies, and
has been shown to be consistent with the observations of William
Herschel.

The basic relation of the model, shown in Figs 5 and 8, was purely
empirical, but one might question whether it has a physiological ba-
sis. Equation (23) implies C ≈ (r2

1 /A)B−1/2, the de Vries Rose law
(Rose 1948), so the relation models the departure of the visual sys-
tem from ideal quantum detection, which is presumed to arise at
the stage of post-retinal processing. Because the visual system is
quite different from a detector limited only by quantum efficiency,
the results presented here are not expected to be applicable to CCD
imaging. However, since a similar threshold curve is obtained for
targets identified visually from photographic plates (Hubble 1932),
one would expect applicability there. Any line of constant magni-
tude brighter than the Ricco asymptote will intersect the threshold
curve, demarcating zones that are visible or otherwise. Hence, the
completeness of any magnitude-limited sample is dictated by the
shape of the curve together with the luminosity function for the
targets in question. This should apply for example to the catalogue
of Shapley & Ames (1932), for which an empirical completeness
function was found by Sandage, Tammann & Yahil (1979).

The photopic model of Section 2 would be applicable to daylight
phenomena such as sunspots, though visibility of objects against
the blue sky would require proper incorporation of chromaticity.
This would also be the case for mesopic applications, e.g. observa-
tion at heavily light-polluted sites where colour can be perceived.
Successful modelling of situations such as these would require new
experimental data sets, other than the achromatic ones used here. At
light-polluted sites where scotopic vision is possible (i.e. darker than
about 19 mag arcsec−2), the sky spectrum will have anthropogenic
contributions for which a photometric correction is necessary, as
shown in Section 1.3.

Photometers are available which measure both photopic and sco-
topic luminance. This would be useful in light-pollution studies
since S/P ratio varies with type of lighting: a moonlit country
sky and a moon-less suburban one polluted by fluorescent lighting
could both give the same reading on a Sky Quality Meter (e.g. 20
magSQ arcsec−2, or ‘SQ 20’), but the country sky would be brighter
to scotopic vision since the S/P ratio of fluorescent lighting is gen-
erally lower than that of moonlight. If the meter were fitted with
a removable scotopic filter and suitably calibrated then S/P ratios
could be found and quoted in addition to photopic luminance.

The International Dark-Sky Association (IDA 2013) currently
recognizes three classes of dark sky: bronze (SQ 20.00–20.99), sil-
ver (SQ 21.00–21.74) and gold (SQ ≥ 21.75). A reading greater than
22 is ‘unlikely to be recorded’ (Unihedron 2014b). The suggested
limiting magnitudes (based on the Bortle Scale) are bronze: 5.0–
5.9, silver: 6.0–6.7, gold: ≥ 6.8. It is questionable whether 20 mag
arcsec−2 can be considered dark, given the results shown in Fig. 18.
Also, it has been argued here that a definition of naked-eye limiting

magnitude based on momentary glimpses is overly susceptible to
scintillation, which is a local and variable effect. Consequently, it
has been suggested that currently recommended magnitude limits
may be excessive, compared with limits that would be obtained for
targets visible for an extended period. It has also been shown that the
recommendations of the Bortle Scale with regard to the visibility of
M33 are contradicted by the present model. Since the scale appears
to be based on subjective judgment rather than rigorous data, its
reliability appears questionable.

A practical definition of a dark sky would be one in which the
Milky Way is capable of being seen. The non-uniformity of the
Milky Way makes this problematic to model, and even if a particular
region were chosen as standard, there remains the problem that
existing luminance measurements are based on a surface-brightness
limit fainter than that of the eye, and are usually filtered to remove
bright stars, whereas unresolved stars just beyond the visual limit
may contribute a significant proportion of the light detectable by
eye. An equivalent limiting magnitude could be found empirically:
observers would view the sky through a variable filter, adjusting
it until a chosen portion of the Milky Way was considered just
visible, and they would also note the faintest stars visible at this
setting.

Bigourdan (1917) noted that the summer Milky Way became vis-
ible from Paris Observatory when the Sun reached 13◦ below hori-
zon. The corresponding sky brightness is dependent on local condi-
tions but would have been approximately 20.2–20.3 mag arcsec−2

(Patat et al. 2006). Bigourdan further noted that with the Sun 15◦

below horizon he was able to see faint NGC objects, while an angle
of 16◦ was sufficient for the faintest to become visible. That would
indicate approximate values of 21.3 and 21.5 mag arcsec−2. That
suggests a three-tier dark-sky classification with proportionally di-
minishing SQ bands 20.25–21.24 (‘grey’), 21.25–21.74 (‘black’)
and 21.75−22.00 (‘pristine’). Recalling, from Section 1.3, the CIE
(2010) suggested limit for scotopic vision, one could add a ‘bright’
band SQ 18.25–20.24, and a ‘white’ band SQ <18.25, in which
scotopic vision would not be achievable for naked-eye sky obser-
vation.

The threshold curve is relative rather than absolute, and it has been
shown that for a given observing situation there is an overall field
factor F which can often be eliminated from calculations. Suppose
that for a given individual under particular observing conditions
at an ideal site (μsky = 22 mag arcsec−2) the naked-eye limit is
m22, and that at a site with greater sky brightness but otherwise
equivalent observing conditions the same person’s limit is m0. Then,
the ‘penalty’ m22 − m0 (calculated using equation 53) is independent
of F, and hence of observer. The difference μ∞ − m0 (from equation
56) is likewise independent of F, i.e. the limiting surface brightness
can be expressed as a ‘supplement’ to be added to an individual’s
point-source limit for a given site. This is shown in Table 1 together
with corresponding banding. For example, a person whose limit
is 6.0 mag at a ‘grey’ site with μsky = 21 mag arcsec−2 (which
would correspond to F = 1.74) is predicted to have limiting surface
brightness 23.74 mag arcsec−2 at that site. At a ‘pristine’ site with
μsky = 21.75 mag arcsec−2 that same person is predicted to have

Table 1. Magnitude penalty pen = m22 − m0 and surface-brightness supplement sup = μ∞ − m0 with respect to ideal
conditions (μsky = 22 mag arcsec−2), with approximate sky-quality banding.

Pristine Black Grey Grey Bright
μsky 22.00 21.75 21.50 21.25 21.00 20.75 20.50 20.25 20.00 19.75 19.50 19.25
pen 0.00 0.10 0.20 0.30 0.40 0.49 0.59 0.68 0.77 0.85 0.93 1.01
sup 18.06 17.98 17.90 17.82 17.74 17.66 17.58 17.49 17.40 17.32 17.22 17.13

MNRAS 442, 2600–2619 (2014)
Downloaded from https://academic.oup.com/mnras/article-abstract/442/3/2600/1052389
by guest
on 05 January 2018



2618 A. Crumey

limits 6.3 mag and 24.28 mag arcsec−2. Good linear approximations
for naked-eye stellar limits (error < 0.05 mag) are

m0 = 0.27μsky + 0.8 − 2.5 logF (18 ≤ μsky ≤ 20), (90)

m0 = 0.383μsky − 1.44 − 2.5 logF (19.5 ≤ μsky ≤ 22). (91)

AC K N OW L E D G E M E N T S

This work was begun while the author was Visiting Fellow at
Durham Institute of Advanced Study. The author warmly thanks
Martin Banks (Berkeley) and Gordon Love (Durham) for invalu-
able conversations during that initial phase of the project.

R E F E R E N C E S

Adrian W., 1989, Light. Res. Technol., 21, 181
Angers G., 1998, J. R. Astron. Soc. Can., 92, 329
Bailey J., Howarth I. D., 1979, J. Br. Astron. Assoc., 89, 265
Bessell M. S., 1990, PASP, 102, 1181
Bessell M., Murphy S., 2012, PASP, 124, 140
Bigourdan G., 1917, Ann. de l’Obs. de Paris, 56, E240
Bishop R., Lane D., 2004, J. R. Astron. Soc. Can., 98, 78
Blackwell H. R., 1946, J. Opt. Soc. Am., 36, 624
Blackwell H. R., 1952a, Illum. Eng., 47, 602
Blackwell H. R., 1952b, J. Opt. Soc. Am., 42, 606
Blackwell O. M., Blackwell H. R., 1971, J. Illum. Eng. Soc., 1, 3
Blondel A., Rey J., 1911, J. Phys., 1, 530
Bortle J. E., 2001, Sky Telesc., 101, 126
Bowen I. S., 1947, PASP, 59, 253
CIE, 1981, An Analytic Model for Describing the Influence of Lighting

Parameters upon Visual Performance (CIE 19/2.1). Commission Inter-
nationale de L’Eclairage, Paris

CIE, 2010, Recommended System for Mesopic Photometry Based on
Visual Performance (CIE 191:2010). Commission Internationale de
L’Eclairage, Paris

Cinzano P., 2005, ISTIL Int. Rep. 9, Night Sky Photometry with Sky Quality
Meter. ISTIL, Thiene

Cinzano P., Falchi F., Elvidge C. D., 2001, MNRAS, 323, 34
Clark R. N., 1990, Visual Astronomy of the Deep Sky. Cambridge Univ.

Press, Cambridge
Clark R. N., 1994, Sky Telesc., 4, 106
Collins P. L., 1999, J. Am. Assoc. Var. Star Obs., 27, 65
Connolly D. M., Barbur J. L., 2009, Aviat. Space Environ. Med., 80, 933
Cox A. N., ed., 1999, Allen’s Astrophysical Quantities. Springer, New York
Crawford B. H., 1937, Proc. R. Soc. A, 123, 69
Curtis H. D., 1901, Lick Obser. Bull., 2, 67
De Vaucouleurs G., 1958, ApJ, 128, 465
De Vaucouleurs G., 1959, ApJ, 130, 728
Dravins D., Lindegren L., Mezey E., Young A. T., 1997a, PASP, 109,

173
Dravins D., Lindegren L., Mezey E., Young A. T., 1997b, PASP, 109, 725
Dravins D., Lindegren L., Mezey E., Young A. T., 1998, PASP, 110, 610
Dreyer J. L. E., 1971, New General Catalogue. R. Astron. Soc., London
Duriscoe D., 2013, PASP 125, 1370
Ellison M. A., Seddon H., 1952, MNRAS, 112, 73
Flamant F., Stiles W. S., 1948, J. Phys., 107, 187
Flower P. J., 1996, ApJ, 469, 355
Fried D. L., 1966, J. Opt. Soc. Am., 56, 1372
Garstang R. H., 1986, PASP, 98, 364
Garstang R. H., 1999, J. R. Astron. Soc. Can., 93, 80
Garstang R. H., 2000, Mem. Soc. Astron. Ital., 71, 83
Garstang R. H., 2004, The Observatory, 124, 14
Gould B. G., 2010, VizieR On-line Data Catalog, 5135, 0
Hallett P. E., 1998, J. Am. Assoc. Var. Star Obs., 26, 139

Hecht S., 1934, Proc. Natl. Acad. Sci. USA, 20, 644
Hecht S., 1947, J. Opt. Soc. Am., 37, 59
Heis E., 1872, Atlas Coelestis Novus. DuMont-Schauberg, Köln
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